Math 6000, Fall 2020 (Prof. Kinser), Homework 5

Nitesh Mathur
9 October 2020

Source Discussed problem/solutions with Zach Bryhtan and then went over drafts for the homework
to get rid of erroneous writing.

Problem 1. Skills developed: extending the concept of “exact sequence” to groups. Let1 — H & G LA
K — 1 be an exact sequence of groups, meaning that o and 3 are group homomorphisms
such that:

(1) o is injective;
(ii) [ is surjective;
(iii) im o = ker(5).

In particular, K ~ G/H (where H is identified with a subgroup of G via «.) Suppose that
there exists a homomorphism 3’ : K — G such that 8 o 5/ = 1, the identity map on K
(this is called a splitting of [3).

Show that
(a) this determines a homomorphism ¢ : K — Aut(H),
(b) giving an isomorphism ¢ : G — H x, K,

(c) such that the diagram below commutes.

1 H—" s a—" Lk 1
‘zd ‘9 ‘zd
1 H Hx, K K 1

(The maps on the bottom row are the standard inclusion and quotient for a semidriect prod-
uct.)

Defs/Thms 1. A pair of morphism X = Y By 7 is exact if im(«) = ker(5).

2. A short exact sequence is an exact sequence of the form: 0 —= B LN

1



3b.

(From Class) Let H, N be groups. Recall,

H x N ={(h,n)|lh € HneN}
is a group via (hy,nq).(ha,n2) = (hihg, nins).
Semidirect product is similar. The underlying set is the same but multiplication is “twisted”

by choice of group homomorphisms ¢ : H — Aut(N)in H x4 N such that (hy, hy).(he,n2) =
(h1¢(n1)).ha, nin2)

(D and F: 4.4 Proposition 13 - Pg. 135) Let H be a normal subgroup of GG. Then G acts by
conjugation on [ as automorphisms of /7. Specifically, the action of G on H by conjugation
is defined for each g € GG by

h— ghg_1
foreach h € H.

.Let0 > A—B—-C—0and 0 — A" — B' — " — 0 be short exact sequences.

A morphism from the first sequence to the second sequence is a triplei.e. « : A — A’ (3 :
B — B',v: C — ' of R—module homomorphisms such that the diagram commutes.

Proof - Setup

(a)

It is given that (3 is surjective = 5 : G — G/H = K isonto = ((G) = K.

By the First Isomorphism Theorem, since ker(5) < G, G/ ker(f) = 5(G) = K.
Since we have an exact sequence of groups, K = G/ ker(f) = G/ im (o) = G/a(H).
In particular, since K = G/H, H = o(H).

K=G/H < H<G.

By Proposition 13 above, since H is normal subgroup, then GG acts by conjugation on H as
automorphisms of /7. So, we can define the following map:

For each g € (G, define

U:G— Aut(H)
g ¢y = ghg™"
foreach h € H.

Finally, we are given that there exists a ' : K — G such that 8 o 8’ = 1x. Then, we have
the following commutative diagram:

K—"—-a¢

~ /
DN J{
<
<
N
Y

(4
Aut(H)



Hence, we have a homomorphism: ¢ : K — Aut(H ) defined by ¢ = ¥ o j'.

(b)

Show

(b-i)

Note

By Theorem 10, Let H and K be groups and let ¢ : K — Aut(H) be a group homomor-
phism. Then, the operation is defined as follows:

(h17 kl)(h27 k2) - (h1k1~h2a kle)

where (i) H < H x4 K, (ii) HN K =1, (iii) forall h € H, k € K, hkh™' = k.h = ¢(k)h.

We need to adapt this in our situation. We have K = G/H, where H < G. In particular, the
quotient group has order [G : H|.

For g € G, a left coset has the form gH = {gh|h € H} and right coset has the form
Hg = {hg|h € H}. (If H is a normal subgroup, then gH = Hy).

Show that 0 : G — H x4 K is an isomorphism.

Define the operationon 6 : G — H x, G/H by:

G—>HN¢G/H
a=ghw— (h,gH) forge G,hec H.

The operation is well defined since the decomposition a = gh is unique.

We need to show that 6 is (i) one-to-one, (ii) onto, and (iii) a group homomorphism.

We will show that the kernel is trivial.

ker(0) = {a € G|0(a) = (ey,eH)}
={a € Gl0(gh) = (eg,eH)} (forge G,h e H)
={a€Glh=ey,gH =ecH}

Since a = hg, we have that a = eg. Because the kernel is shown to be trivial, f is injective.

(Credit Zach for spotting this)

If a = gh,a,9 € G,h € H, then the above computation holds true only if g € H (since in
line 3, we have gH = eH = H).

Suppose by way of contradiction, that ¢ € H and g # eg. Then, we have a = g - eg —
(eg,eH) = g = e = a = eg as well. (We will show below in (b-iii) that # is a group
homomorphism, so explicitly if ¢ € H such that ¢ # eq = g = h/. Then, a = gh =
heg =h" = 0(a) =0(gh) = 0(ec - h') = (h',eH) # (em,eH) by assumption, which is a
contradiction. Hence, we need g = e¢).



(b-ii) Let (hy, g1 H) be an arbitrary element of H x4, G/H. Then, we can choose a1 = g1h; € G
such that 0(a,) = 0(g1h1) = (h1, 91 H).

Since (h1, g1 H) was arbitrary, we have shown that 6 is surjective.

(b-iii) Let a1, a9 € G, where a; = g1h1, a9 = gghg.

Then, by using the multiplication in semi-direct products as above, we get:

0(a1)0(az) = 0(g1h1)0(g2h2)

= (h1,91H) - (h2, g2H)

= (hi(g1H).he,g1HgoH) (by the action)
= (hig1Hha(giH) ™", g1g2H)  (conjugation)
01(g1h1)(g2h2)]

= 6(ajas)

(c) (By 5. in Defs/Thms), If for two short exact sequences, we can show that there is a morphism
from the first sequence to the second sequence via a triple, then then the diagram commutes.

It was given that the sequence 1 — H 5 G S K1 , was an exact sequence of groups.

For the second sequence, 1 — H Ny *) X K 2 K — 1, it is clear that

(1) ¢ is injective (since it is the standard inclusion)

(i1) 9 is surjective (since it is the projection)

(iii) In particular, im (7) = ker(m) which can be seen from:

For h € H,i(h) = (h,0) = ker(m,). Hence, this is also a short exact sequence.
Then, we have the following triple:

Let o : H — H be the identity mapping on H.

Let 0 : G — H x4 K be the isomorphism defined in (b).

Lety : G/H — G/H be the identity on G/H = K.

Since we have found a triple, the diagram commutes.




Problem 2.

Skills developed: practice with definitions below. Prove that the following are equivalent for
aring R:

(1) every left R—module is projective, and (ii) every left R—module is injective.

Defs/Thms 1.

3a.

3b.

3c.

A short exact sequence 0 - A — B — C — 0 is called split if it is isomorphic to the
sequenceO—>AZ—1>A@Ci>C—>O.

A P € R — Mod is projective if Hompg(P, —) is an exact functor. () € R — Mod is an
injective module if Homp(—, Q) is an exact functor.

A contravariant function F' (between module categories) is left exact if 0 - A — B —
C — 0exact=0— F(C) — F(B) — F(A) is exact.

A covariant functor F' between module categories is right exact if 0 - A — B — C — 0
exact = F(A) — F(B) — F(C) — 0.

A functor which is both left and right exact (thus preserves short exact sequences) can also
show it preserves all exact sequences) is called a exact functor.

Proposition 30 Let P be an R—module. TFAE:
(i) P is projective.
(i1) For any R—modules L, M and N, if

0L ME NSO

is a short exact sequence, then

0 — Homp(P, L) % Homp(P, M) £5 Homp(P,N) — 0

(iii) For any R-modules M and N, if M % N — 0 is exact, then every R—module ho-
momorphism from P into N lifts to an R—module homomorphism into M, i.e. given
f € Hompg(P, N), there is a lift /' € Homp(P, M) making the diagram commute.

(iv) If P is a quotient of the R—module M then P is isomorphic to a direct summand of M,
i.e. every short exact sequence 0 — L — M — P — 0 splits.

(v) P is a direct summand of a free module i.e. Jset [ and P € R — Mod such that
P @ P’ ~ R! (free module)

. Proposition 34 Let () be an R—module. The FAE:

(1) @ is injective.
(i1) For any R—modules L, M, and N, if

0LEMES NS0



is a short exact sequence, then

0 — Homg(N, Q) % Homgp(M, Q) % Homg(L, Q) — 0
is also a short exact sequence.

(iii)) For any R—modules L and M, if 0 — L L Mis exact, then every R— module
homomorphism from L into () lifts to an R-module homomorphism of M into () i.e., given
f € Hompg(L, Q) there is a lift F' € Hompg(M, Q) making the following diagram commute:

0-L% M, L ER @, then there is an induced map f : M — Q).

(iv) If ) is a submodule of the R—module M then () is a direct summand of M, i.e. every
short exact sequence 0 = () = M — N — 0 splits.

Show =

Show <«

Show that a left R— projective module is injective.

Suppose every left R—module is projective. Consider a short exact sequence:
O—=L—-M-—=P—=0

Since P is projective, by Proposition 30 (iv), every short exact sequence splits, i.e. it is
isomorphic to the sequence

0=LS5LaP ™ P 0
Hence L is precisely the injective module. Since we assumed that every R—module is pro-
jective, we are done.
(We can see this if we let L. = (). Then the statement above corresponds to Proposition 34
(iv), where () is injective:)

05Q5QeP BP0

Show that a left R— injective module is projective.

Suppose every left R—module is injective. Consider a short exact sequence:

0—-Q—M—N-—=0

Since () is injective, by Proposition 34 (iii), the sequence splits, i.e. it is isomorphic to the
sequence.

0-Q>QaN2 N0
Hence, N is precisely the projective module. Since we assumed every left R—module is
injective, we are done.

(We can see this if we let NV = P. Then, the statement above corresponds to Proposition 30
(@v)): '
0-Q5QaP BP0




Problem 3. Skills developed: practice with splitting and introduction to a useful module construction.

This exercise introduces the concept of pushout to prove an equivalent condition for a module
to be injective that was stated but not proved in class. given homomorphisms of Z—modules
g1 : M — Njand go : M — Ns, the pushout of f, g is the R— module

N1 @y Ny := Na/{(91(m), —g2(m))|m € M}.

The pushout fits into a commutative diagram:

]\4L>N1

‘gQ ‘fl
f2

Ny —— Ny @y Ny

where each f; is the inclusion of the summand followed by the quotient.
(a) Prove that if ¢; is injective, then f, is injective.

(b) Let () be an R—module such that every injective map h : () — M splits. Prove that () is
injective. Hint: use an appropriate pushout and part (a)

Remark: There is a “dual” notion of pullback that can be used to prove directly the analagous
characterization of projective modules, without going through the characterization that a
projective module is a direct summand of a free module.

Proof (a) It is given that each f; is the inclusion in the summand followed by the quotient, i.e.:
For ny € Ny, fi(n1) = (n1,0) + (g1(m), —ga(m)), for m € M. Similarly,
For ny € Ny, fa(na) = (0,n2) + (g1(m), —go(m)) form € M.
We are also given that g; is injective. Hence, for my,my € M, g1(m1) = g1(ma) = my =

mo.

Show Let No1, Moo € NQ. If f2(ﬂ21) = fQ(Tng), show that No1 = N9g.

fa(nar) =

(0,m21) + (g1(m), —g2(m))
(0,m21) = (0,n22) + (g1(m), —ga(m))
(m))

(91( ) No1 — Ni2g — ga(n

f2(na2)
(0,m92) + (g1(m), —g2(m))  (form € M)
(0,0)
(0,0)

g1 is injective <= ker(gy) is trivial = ¢1(m) =0 <= m = 0.

Since M, N, are R—modules and g : M — N, is an R—module homomorphism, then 0
maps to 0 = go(m) = 0.



Then, we have:

(0,n21 — Nag — 92(m)) = (07 0)
= (O, No1p — Nog — O) = (0, 0)
= Nop — Nog = 0

= No1 = N2

(b) Recall Proposition 34 (ii) states the following:

For any R—modules L and M if 0 — L E> M 1is exact, then every R—module homo-
morphism from L into @ lifts to an R—module homomorphism from L into @ lifts to
an R—module homomorphism of M into @, i.e. given f € Homg(L,(Q), there is a lift
F € Hompg(M, Q) making the diagram commute.

Note, that 0 — L — M is exact <= WV is injective.

Since an injective map h : () — M splits, for a short exact sequence, it is isomorphic to the
following sequence:

l=>M->MaeQ —Q—1.

Let L be an R—module. Let g; : L — M be an injective map and consider the following
commutative diagram:

L—" M

-

Q—— M®,Q

This is the pushout from part (a). Because g; : L — M is assumed to be injective, by part
(a), f» is also injective.

Since h : () — M splits, one of the equivalent definitions is that there exists an R—module
homomorphism: w5 : M &, Q — Q.

Then, consider F' : M — () such that F' = f; o m5. Hence, we have found a lift such that the
diagram commutes.

(The diagram commutes because w5 o f; 0 g1 : L — () and similarly, my 0 fo 095 : L — Q.
In particular, this is equal to F' o g1 : L — (), where F'is the lift defined above).




